假设有N个人生活在一条直线的街道上,它只是位于X坐标轴上。第i个人的坐标是Xi米。在街上有一个外围餐厅,坐标X米。在午餐时间的一天,每个人同时从餐厅接受订单。作为餐厅的工作人员,您需要从餐厅开始,向N人送食物,然后回到餐厅。你的速度是每分钟V-1米。
你知道N人有不同的个性;因此他们对食物到来的时间有不同的感觉。他们的感受是通过不满指数衡量的。一开始,每个人的不满指数为0.在等待食物时,第i个人将获得每分钟的双不满指数。
如果一个人的不满指数过高,他将不再购买你的食物了。因此,您需要尽可能降低所有人的不满指数之和,以便最大化您的收入。你的任务是找到不满指数的最小总和。
输入
三个整数N(1 <= N <= 1000),V(V> 0),X(X> = 0)开始,然后是N行。每行包含两个整数Xi(Xi> = 0),Bi(Bi> = 0),如上所述。
您可以放心地假设输入和输出中的所有数字都小于2^31 - 1。
输出
输出一个数字,这是不满指数的最小总和。
输入:
5 1 0
1 1
2 2
3 3
4 4
5 5
输出:
55